ФИЗИКО-МЕХАНИЧНИ СВОЙСТВА НА ДЪРВЕСИНА ОТ ЧЕРЕН БОР (PINUS NIGRA ARN.) ОТ СЕМЕПРОИЗВОДСТВЕНИ НАСАЖДЕНИЯ В ЮГОЗАПАДНА БЪЛГАРИЯ

Христо Стоянов, Екатерина Андонова
Институт за гората – София
Българска академия на науките

Абстракт: Изследвана е дървесината на черен бор (Pinus nigra Arn.) от няколко семепроизводствени насаждения в Югозападна България на територията на държавните лесници Симитли, Кресна, Разлов, Места и Невеста. Насажденията са разположени при най-ниска височина от 1000 до 1300 m надм. в. и са на възраст от 100 до 180 г. Определената е макроструктура на годишните пръстени, плътността на дървесината и якостните показатели на натиск по посока на влакната и статично огане.

Ключови думи: семепроизводствени насаждения, дървесина, годишни пръстени, плътност, якостни показатели

Черният бор (Pinus nigra Arn.) е един от основните иглолистни дървета в голямата лесорастителна зона у нас. На северните месторасления е разпространен до 600-700 m надм. в., а на южните достига до 1200-1300 m надм. в. Близостта на насажденията му до населени места е довела до унищожаване на част от тях и разполагане на неговия ареал. Запазените автентични насаждения с добри растежни и таксационни показатели в повечето случаи са включени при масовата селекция на вида в семепроизводствени насаждения. Отделени са 323 постоянни семепроизводствени насаждения от черен бор с обща площ 2467,4 ha и 20 временните с обща площ 152,3 ha (Rafailov et al., 1999). При техния избор е обръщано внимание предимно върху някои биологични и морфологични особености като възраст, продуктивност, равновъзрастеност, самоокастриране на стъблата и гр., които определят качествената структура на насажденията. Не са проучени достатъчно физико-механичните свойства на дървесината на отделните произходи, които определят нейното качество като суровина за различна употреба.

Целта на настоящите изследвания е да се проучат основни физико-механични свойства на дървесината на черен бор от различни произходи в Югозападна България, които са определени като семепроизводствени насаждения.
Изследванията на дървесната са проведени върху материали, добытни от пет семепроизводствени насаждения, чиято кратка лесовъдско-таксационна характеристика е представена в таблица 1.

Семепроизводствените черенборови насаждения се намират в района на Югозападна България и са разположени на територията на пет държавни лесничества при надморска височина от 1000 до 1300 м. Насажденията от Габра е със североизточно изложение и се намира при 1000 м надм. в., а тези от Разлог и Симитли - със 1050 и 1150 м у северно изложение. Насажденията от Кресна са разположени на 1250 м и Гостун на 1300 м на прякочерни изложени. Почвите са кафяви преходни (Eutric cambisol) или кафяви тъмни (Distric cambisol). Участието на черния бор в насажденията е от 70 до 100%, а другите дървесни видове (бял бор и бук) участват

<table>
<thead>
<tr>
<th>Прозход</th>
<th>Надм. бит.(м)</th>
<th>Почва</th>
<th>Състав</th>
<th>Пълнота</th>
<th>Бонитет</th>
<th>Възраст, г.</th>
<th>Височина, м</th>
<th>Диаметър, см</th>
</tr>
</thead>
<tbody>
<tr>
<td>Симитли</td>
<td>1150</td>
<td>Distric Cambisol</td>
<td>0.5,7,6k,3</td>
<td>0.5</td>
<td>1</td>
<td>110</td>
<td>27</td>
<td>42</td>
</tr>
<tr>
<td>Кресна</td>
<td>1250</td>
<td>Eutric Cambisol</td>
<td>6.8,6b,2</td>
<td>0.6</td>
<td>1</td>
<td>100</td>
<td>26</td>
<td>38</td>
</tr>
<tr>
<td>Разлог – Катарино</td>
<td>1050</td>
<td>Distric Cambisol</td>
<td>0.5,7,6k,3</td>
<td>0.5</td>
<td>1</td>
<td>110</td>
<td>28</td>
<td>42</td>
</tr>
<tr>
<td>Места – Гостун</td>
<td>1300</td>
<td>Eutric Cambisol</td>
<td>0.7,1</td>
<td>0.7</td>
<td>1</td>
<td>120</td>
<td>25</td>
<td>42</td>
</tr>
<tr>
<td>Небестиново – Габра</td>
<td>1000</td>
<td>Eutric Cambisol</td>
<td>0.5,10</td>
<td>0.5</td>
<td>11</td>
<td>180</td>
<td>24</td>
<td>60</td>
</tr>
</tbody>
</table>

Таблица 1
Forestry taxation characteristic of *Pinus nigra* seed production stands

Table 1
от 10 до 30%. Семепроизводствените насаждения са на възраст от 100 до 180 г. и са от първи бонитет. Само черният бор с произход от Габра, който е на възраст 180 години и е от Втори бонитет. Средната височина на насажденията е от 24 до 28 м, а средният им диаметър – от 38 до 60 см.

От всичко насаждение е отсечено по едно средно моделно дърво, от което е добита дървесина за изпитване на физико-механични свойства. Вземат са шайби през 2 м от основата към върха на стъблата и опитни секции с дължина по 1,5 м на три места – на гръдна височина, в средата и на 3/4 височина на стъблата.

Опаковъчните белези на дървесната са измерени участъкът на ядрото и широчината на годишните пръстени.

По стандартни методи, съзрителите в дървесознание, са изготвени пробните тела и са определени плътността на дървесната във въздушен сухо състояние и граничните якости на намек надлъжно на влакната и статично осъване. Датите са обработени вариационно статистически.

РЕЗУЛТАТИ И ОБСЪЖДАНЕ

Черният бор се отнася към ядропитите изолистни дървесни видове. Той образува червено-кафяво ядро, което при настоящите изследвания заема от 34,7 до 52,0% от диаметъра на стъблата на гръдна височина. С най-малко участие на ядрова дървесина е произходът от Симитли, а най-голямо е участието при произхода от Габра. При относително еднакви растежни условия, от което са взети опитните дървета, значителните различия в относителния диам на ядропитите дървесина се дължат на разликата във възрастта на дъревата, от което зависи ядрообразователният процес и вероятно на индивидуални особености на произходите. Опитното дърво от Габра е от 60 до 80 г. по-възрастно от другите произходи. Като качествен показател участието на ядрото има отношение към устойчивостта на дървесната към естествени и нейната плътност. Това се дължи на смолните вещества, напрупани в ядрото, които при черният бор са около 2,5 пъти повече в сравнение с беловинната дървесина (Стамков, 1949).

В таблица 2 е представено изменението на широчината на годишните пръстени по радиуса на стъблата на гръдна височина през 10 г. Известно е, че при изолистните дървесни видове тя се променя с възрастта и растежните условия главно за смекна на продължението дървесина, което оказва влияние върху плътността и якостните показатели. С най-широки годишни пръстени є ювенилната дървесина.
Таблица 2

<table>
<thead>
<tr>
<th>Години Years</th>
<th>Симитли Simitli</th>
<th>Кресна Kresna</th>
<th>Разлог Razlog</th>
<th>Гостун Gostun</th>
<th>Невестино Nevestino</th>
<th>Габра Gabra</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 10</td>
<td>3,65</td>
<td>3,15</td>
<td>2,42</td>
<td>2,70</td>
<td>2,45</td>
<td></td>
</tr>
<tr>
<td>11 - 20</td>
<td>3,44</td>
<td>1,85</td>
<td>3,85</td>
<td>3,75</td>
<td>2,45</td>
<td></td>
</tr>
<tr>
<td>21 - 30</td>
<td>1,85</td>
<td>1,65</td>
<td>2,45</td>
<td>3,11</td>
<td>1,60</td>
<td></td>
</tr>
<tr>
<td>31 - 40</td>
<td>1,45</td>
<td>1,85</td>
<td>1,90</td>
<td>2,25</td>
<td>1,21</td>
<td></td>
</tr>
<tr>
<td>41 - 50</td>
<td>2,02</td>
<td>2,80</td>
<td>1,65</td>
<td>2,03</td>
<td>1,12</td>
<td></td>
</tr>
<tr>
<td>51 - 60</td>
<td>1,75</td>
<td>3,51</td>
<td>1,55</td>
<td>1,45</td>
<td>1,03</td>
<td></td>
</tr>
<tr>
<td>61 - 70</td>
<td>1,65</td>
<td>2,45</td>
<td>1,15</td>
<td>1,35</td>
<td>1,05</td>
<td></td>
</tr>
<tr>
<td>71 - 80</td>
<td>1,38</td>
<td>2,25</td>
<td>1,55</td>
<td>1,07</td>
<td>0,85</td>
<td></td>
</tr>
<tr>
<td>81 - 90</td>
<td>3,25</td>
<td>1,33</td>
<td>0,84</td>
<td>0,85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91 - 100</td>
<td>0,75</td>
<td>0,52</td>
<td>0,92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 - 110</td>
<td>0,83</td>
<td>0,65</td>
<td>0,84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 - 120</td>
<td>0,44</td>
<td>0,72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121 - 130</td>
<td>0,45</td>
<td>0,72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131 - 140</td>
<td>0,38</td>
<td>0,66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141 - 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,83</td>
<td></td>
</tr>
<tr>
<td>151 - 160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,71</td>
<td></td>
</tr>
<tr>
<td>161 - 170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,83</td>
<td></td>
</tr>
<tr>
<td>171 - 180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,61</td>
<td></td>
</tr>
<tr>
<td>Средно Average</td>
<td>2,15</td>
<td>2,53</td>
<td>1,77</td>
<td>1,50</td>
<td>1,08</td>
<td></td>
</tr>
</tbody>
</table>

до 20 г., след което към периферията на стъблата постепенно намалява. При по-възрастни прохожди (Гостун и Габра) по-значително намаляване се наблюдава при пръстените, формирани след настъпването на зрелата възраст на дърветата. При прохожда от Кресна е нарушена общата закономерност, като във възрастта между 10 и 40 г. са формирани го̀щини пръстени с относително по-малка широчина. След тази възраст темпът на радиално нарастване е по-висок и при възраст между 80 и 90 г. пръстените са най-широки. Формирането
на тази дървесина се дължи вероятно на увеличен растежен простор, което е довело до напълване на по-голям светлопрен прираст.

При благоприятните растежни условия на изследваните семепроизводствени насаждения (I, II бонитет) се формира дървесина със средна широчина на годишните пръстени от 1,08 до 2,53 mm, като е добре изразена обратната връзка между изменението на широчина та (таблици 2) и възрастта на насажденията (таблици 1). От гледна точка на плътността и якостните показатели на дървесината при изголението дървесни вида Полубояринов (1976) посочва като близка до оптималната широчина около 1,4 mm.

По височината на стъблата се наблюдава, макар и по-слабо изразено, увеличаване на широчината на годишните пръстени от основата към връха до областта на короната, след което тя леко намалява (таблици 3). Данните потвърждават общата закономерност при изголението дървесни вида, установена от редица автори (Stage, 1963, Загреев, 1964, Бълскова, 1976 и гр.), които посочват, че най-широки годишни пръстени се формират в областта на короната. Това е показател за пълноствеността на стъблата, а по-тесните годишни пръстени във връхните части възят до тяхната повече или по-малко конична форма.

Резултатите за плътността на дървесината на черния бор от семепроизводствени насаждения са представени в таблица 4.

Средната плътност на дървесината от отделните произходи е в граници от 521 до 575 kg/m³. Първата стойност се отнася за произхода от ДА Симитли, а втората за ДА Невестино - Габра. Ако се вземе за база плътността на дървесината на произхода от Симитли, то спрямо нея останалите произходи имат от 1,9 до 10,4% по-висока плътност. Практически е еднаква плътност е дървесината на три от произходите - Кресна, Катарино и Гостун, а най-плътна е тази от насаждението в Габра.

За хомогенността на дървесината при отделното дърво може да се съди от изменението на плътността по височината на стъблото. Тя е показател за качеството на сортиментите, доброто на различно разстояние от основата на дърветата, особено когато се оценява съдържанието на сухо вещество в единица обем дървесина. При черния бор се наблюдава намаляване на плътността на дървесината във вертикално направление (таблица 4). Разликите в плътността, определена на гръдна височина и тази на 3/4 от височината на стъблата са от 52 до 82 kg/m³, което е изменение от 9,3 до 13,4% спрямо плътността на гръдна височина. С най-хомогенен строеж е дървесината с произход от Симитли (9,3%), следвана от Кресна и Места (11,2%), Разлог (12,8%) и Невестино (13,4%).
Таблица 3
Изменение на широчината на годишните пръстени по височината на стъблата
Table 3
Variation of year ring width along the stem height

<table>
<thead>
<tr>
<th>Произход/Provenances</th>
<th>Simitli</th>
<th>Kresna</th>
<th>Razlog</th>
<th>Gostun</th>
<th>Nevestino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Височина на измерване</td>
<td>2.30</td>
<td>2.55</td>
<td>1.87</td>
<td>1.54</td>
<td>1.14</td>
</tr>
<tr>
<td>Measurement height</td>
<td>2.33</td>
<td>2.48</td>
<td>1.86</td>
<td>1.54</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>2.31</td>
<td>2.46</td>
<td>1.81</td>
<td>1.54</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>2.52</td>
<td>2.52</td>
<td>1.84</td>
<td>1.56</td>
<td>1.11</td>
</tr>
<tr>
<td></td>
<td>2.39</td>
<td>2.57</td>
<td>1.86</td>
<td>1.58</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>2.56</td>
<td>2.66</td>
<td>1.81</td>
<td>1.65</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>2.57</td>
<td>2.73</td>
<td>1.82</td>
<td>1.73</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>2.73</td>
<td>2.82</td>
<td>1.91</td>
<td>1.74</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>2.55</td>
<td>2.92</td>
<td>1.99</td>
<td>1.68</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>2.56</td>
<td>3.03</td>
<td>2.05</td>
<td>1.59</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>1.90</td>
<td>2.98</td>
<td>1.88</td>
<td>1.61</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>2.85</td>
<td>2.85</td>
<td>1.65</td>
<td>1.65</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>2.25</td>
<td>2.17</td>
<td>1.67</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.82</td>
<td>0.66</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Данните за измерените якости показват на дървесината на чернина бор са представени в таблица 5.

Средната гранична якост на напън на дървесината от отделните произходи е в граници от 43.6 до 47.5 МПа. Практически е единаква якост на дървесината на три произхода – Симитли, Кресна и Разлог (43.9-44.4 МПа). С около 4-5% по-голяма якост на напън е дървесината от произход от Гостун, а тази от Габра превъзхожда първите три произхода с 7-8%.

Граничната якост на статично огъване е от 80.0 МПа при произхода от Кресна до 87.2 МПа при произхода от Габра.
Таблица 4
Плътност на дървесината на черен бор от семепроизводствени насаждения

<table>
<thead>
<tr>
<th>Произход</th>
<th>Плътност на дървесината на височина Timber density along the height</th>
<th>Средна плътност, kg/m³ Average density, kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h₀, 1/2 h 3/4 h</td>
<td>n</td>
</tr>
<tr>
<td>Сымитли</td>
<td>557 505 502</td>
<td>115</td>
</tr>
<tr>
<td>Кресна</td>
<td>588 538 512</td>
<td>120</td>
</tr>
<tr>
<td>Ранлоз – Камарино</td>
<td>562 541 490</td>
<td>120</td>
</tr>
<tr>
<td>Места – Гостун</td>
<td>563 532 503</td>
<td>120</td>
</tr>
<tr>
<td>Невестино – Габра</td>
<td>613 581 531</td>
<td>120</td>
</tr>
</tbody>
</table>

Изменението на граничната якост на напън надлъжно на влакната и статично огъване следват изменението на плътността на дървесината както между отделните произходи, така и по височината на опитните дървета.

ЗАКЛЮЧЕНИЕ

Представените данни за изследваните физико-механични свойства на дървесината на петте семепроизводствени насаждения от черен бор в Югозападна България имат близки показатели за плътността и граничните якости на напън и статично огъване. Варирането им в рамките на отделното дърво в зависимост от мястото на измерване с по-голямо, отколкото между средните стойности на произходите.

Изследваните семепроизводствени насаждения са от висок бонитет и се намират при относително еднакви почвени условия,
Таблица 5
Границна якост на намук и статично огъване на черен бор от семепроизводствени насаждения

Table 5
Ultimate compressive under pressure and static bending of Pinus nigra seed stands

<table>
<thead>
<tr>
<th>Произход provenance</th>
<th>Якост на: Strength at</th>
<th>Височина: Height</th>
<th>Средни стойности: Average values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h₁₀</td>
<td>1/2 h</td>
<td>3/4 h</td>
</tr>
<tr>
<td>Симурман</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simitli</td>
<td>45,9</td>
<td>43,7</td>
<td>42,0</td>
</tr>
<tr>
<td></td>
<td>86,2</td>
<td>83,7</td>
<td>82,0</td>
</tr>
<tr>
<td>Кресна</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kresna</td>
<td>46,2</td>
<td>43,4</td>
<td>42,2</td>
</tr>
<tr>
<td></td>
<td>85,9</td>
<td>80,4</td>
<td>73,8</td>
</tr>
<tr>
<td>Разлозо – Камарино</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Razlog – Katurino</td>
<td>47,0</td>
<td>43,2</td>
<td>43,0</td>
</tr>
<tr>
<td></td>
<td>88,4</td>
<td>77,6</td>
<td>74,8</td>
</tr>
<tr>
<td>Места – Гостун</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesta – Gospun</td>
<td>48,6</td>
<td>46,1</td>
<td>44,0</td>
</tr>
<tr>
<td></td>
<td>90,1</td>
<td>85,5</td>
<td>3,9</td>
</tr>
<tr>
<td>Невестино – Габра</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevestino – Gabra</td>
<td>49,2</td>
<td>47,8</td>
<td>45,5</td>
</tr>
<tr>
<td></td>
<td>90,5</td>
<td>86,1</td>
<td>85,0</td>
</tr>
</tbody>
</table>

разположени в сравнително малък височинен диапазон, но при два типа изложение, привлича и същинето, при което са формирали дървесина с добри качествени показатели и са семепроизводствен ресурс при бъдещи залесявания с черен бор за създаване на насаждения с определени физико-механични свойства на дървесината.

АПЛАТУРУТА

Бълкова, Г. 1976. Сравнителни изследвания върху анатомичния строеj и физико-механичните свойства на дървесината на обикновената ела (Abies alba Mill.) в зависимост от условия на местопостане, Автореферат, С. 39.
Загрее, В. В. 1964. Изменение толщина годичного кола по высоте ствола. Сб. Новое в лесной таксации, М.
PHYSICAL AND MECHANICAL PROPERTIES OF *PINUS NIGRA* ARN. TIMBER FROM SEED PRODUCTION STANDS IN SOUTH WEST BULGARIA

H. Stoykov, E. Andonova
Forest Research Institute – Sofia
Bulgarian Academy of Sciences

(Summary)

Pinus nigra Arn. timber from 5 seed production stands was studied. The width of the year rings was measured and the density and utmost compressive strength under pressure and static bending was determined. At relatively similar growth conditions year rings with mean width were formed within the limits of 1.08 and 2.53 mm depending on the stands’ age. The timber density of different provenances is from 521 to 575 kg/m³ and the utmost compressive strength and static bending are as follows: from 43.9 to 47.5 MPa and from 80.0 to 87.2 MPa. The variation of the average values of the indicators studied between different provenances is less than their variation along the height.

Key words: seed production plantations, timber, year rings, density, strength indicators